产品中心PRODUCT CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心

首页-产品中心-新型数据挖掘智能

新型数据挖掘智能

更新时间:2025-09-19      点击次数:2

大多数专业分析软件昂贵、复杂、投资巨大、业务侵入深、使用门槛高、只适合专业人士使用。还有很多基于大数据平台的产品,实 际上做得是统计、切片、汇总、展示、数据可视化、大屏等,看似很炫,其实挖得很浅。而数据挖掘能力较强的平台或工具,不成本很高,而且需要操作者有很强的技术能力,一般业务人员很难用起来。我们的产品定位于轻量、云端、随用随取、贴合实际业务、产生价值。另外,我们系统的产出定位于小型的咨询报告,可以一定程度上替代分析团队或咨询公司,很大程度上降低用户的成本。基于智能拟合引擎引擎拟合影响因素并预测未知。新型数据挖掘智能

潜客识别引擎:您正在推销商品或服务,但过于盲目的推销活动耗费了您很大的资金和人力。您希望提高命中率,降低获客成本。使用客户判别引擎,帮您发现哪些人具有更高的营销成功率。只需片刻,即可从多达200万个候选人中识别出潜在客户,并将图文并茂的报告呈现眼前。识别用户——预先判断用户对产品的兴趣度。你可能从事电商、互联网、网游、广告、新零售、新媒体,或者其它行业;你一定想知道谁对你的产品感兴趣;你也一定想提高命中率,降低获客成本。告别盲目,开始洞悉!将用户数据灌入暖榕敏捷数据挖掘系统—潜在客户识别引擎,即可预先获知每个用户在不同营销策略和渠道下的推荐成功概率,从而帮助您优化营销策略,提高营销准确性并降低营销成本。另外,大多数二分类问题也同样适用,如智能诊断系统。经济数据挖掘智能获客小白式操作,预测精度高。

某种程度上,推荐技术的高度多样性在于一些实现推荐时遇到的挑战,如客户评分的稀疏性,计算的可扩展性,以及缺乏新物品和客户的信息。显然,我们无法在本节中综述哪怕一下部分方法和算法,而且在此处探讨这些也没有太多的意义,因为这样的综述俯拾皆是。相反我们将关注于驱动设计推荐系统的目标和效用函数,而基本上忽略这一问题的算法和技术侧的细节。从计量经济学的观点来看,推荐系统问题与电商和全渠道商业在很多零售领域的兴起带来销售品类的扩张是紧密相关。大的平类增加了很多非**产品,每一个产品的销售量和贡献的收入都是很少的,但是这个“长尾”的总体贡献是非常的。传统推荐技术如推广**的商品不能有效利用非**商品的潜力,这就需要更巧妙的推荐方法在数百万他或者她从未探索过的产品中对其进行引导。

BI 工具或报表工具。这些工具大多只能统计、聚合、切片、下钻、大屏可视化等,看似很酷炫,实际挖得很浅,无法应对深度需求。 鉴于此,我们将基于新一代互联网技术、流式计算和人工智能技术,开发一套弹性、易用、简单、深度挖掘的敏捷数据挖掘 SaaS 系统。它具有以下特点: 1. 互联网、流式计算、AI 算法、下一代 IT 技术深度融合 2. 不是数据挖掘,更是价值挖掘。贴近业务实际、聚焦业务痛点,专注于难、痛、愁、急的问题。 3. 研发并落地前沿计算引擎,如时序预测引擎、组合与推荐引擎、个性化推荐引擎、潜客识别引擎、智能拟合引擎、线性回归与归因引擎、帕累托价值分析器、 RFM 客户价值分析器、渠道转化分析器等,且支持个性化功能定制 4. 页面友好、全模块化、一目了然 5. 先进的自动建模技术,无需懂技术,很低使用门槛,小白式操作 6. 与业务系统解耦,开箱即用,完全无侵入 7. 即使是私有部署,也可以和已有系统隔离,并支持弹性扩容 8. 每份结果都是一份有深度的小型咨询报告。使用RFM客户价值分析器,衡量客户价值和客户创造利益的能力。

大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等,这些方法从不同的角度对数据进行挖掘。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。自动生成干货满满的富媒体分析报告。线上零售数据挖掘报表工具

使用个性化推荐引擎,帮您为顾客推荐正确的商品。新型数据挖掘智能

医学数据挖掘的过程主要包括数据预处理,挖掘过程、模式评估和知识表达。为了减少数据误差得到预期的结果,每一项具体的过程都可能需要反复执行。 数据预处理 即把采集到的医学原始数据加工成适用于进一步处理的数据源,主要包括数据的清洗、集成、归约、清理和变换。其中数据清洗又是数据预处理关键的一步。医院信息系统原始数据中存在着大量的“脏数据”[8],在保证数据原样性的基础上对空缺数据、重复数据、异常数据进行反复筛选,可以降低误差,终形成便于挖掘的数据。 数据挖掘过程 经过特定的技术和运用决策树、粗糙集,甚至神经网络等算法对经过预处理的数据进行建模与评估,得到有用的分析信息,为用户提供相应的辅助支持。 模式评估 也称数据分析,是从构建的数据库中发现有价值的信息,并对其进行判断以及合理预测,为用户做出正确决策提供依据。合格的分析过程要求研究人员使用符合数据特点的挖掘工具。 知识表示 即结果评价与展示,可以结合可视化技术,用图表和图形的方式讲知识具体化、形象化。新型数据挖掘智能

上海暖榕智能科技有限责任公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在上海市等地区的数码、电脑行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**上海暖榕智能科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   上海立敬园林绿化工程有限公司  网站地图  搜狗地图  电脑端